Integer complexity and well-ordering

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integer Complexity, Addition Chains, and Well-Ordering

In this dissertation we consider two notions of the “complexity” of a natural number, the first being addition chain length, and the second known simply as “integer complexity”. The integer complexity of n, denoted ‖n‖, is the smallest number of 1’s needed to write n using an arbitrary combination of addition and multiplication. It is known that ‖n‖ ≥ 3 log3 n for all n. We consider the differe...

متن کامل

Subgraphs and well-quasi-ordering

Let % be a class of graphs and let i be the subgraph or the induced subgraph relation. We call % an idea/ (with respect to I) if G I G' E % implies that G E %. In this paper, we study the ideals that are well-quasiordered by I. The following are our main results. If 5 is the subgraph relation, we characterize the well-quasi-ordered ideals in terms of excluding subgraphs. If I is the induced sub...

متن کامل

Parallel Complexity of Integer

It is shown that integer coprimality testing is in NC.

متن کامل

well-ordering of the reals

Assuming an inaccessible cardinal κ, there is a generic extension in which MA+ 20 = κ holds and the reals have a ∆1 well-ordering.

متن کامل

Rank-Width and Well-Quasi-Ordering

Robertson and Seymour (1990) proved that graphs of bounded tree-width are well-quasi-ordered by the graph minor relation. By extending their arguments, Geelen, Gerards, and Whittle (2002) proved that binary matroids of bounded branch-width are well-quasi-ordered by the matroid minor relation. We prove another theorem of this kind in terms of rank-width and vertex-minors. For a graph G = (V,E) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 2015

ISSN: 0026-2285

DOI: 10.1307/mmj/1441116656